

Waiter, there’s a
compiler in my

shellcode!

Josh Stone
NolaCon, 2019

Waiter by Adrien Coquet from the Noun Project

Not so loud, or
everybody will

want one!

Introduction: Josh Stone

 30 years programmer

 19 years infosec

 15 years married

 14 years cancer
 survivor

 Parent of 3 kids

 BJJ blue belt

 CGA for life

 Yeah, older than I look

Introduction: Josh Stone

Currently a researcher
working for the R&D
team at FusionX, part of
Accenture Security.

NOTE: this presentation
covers EvilVM, which is a
personal project not
connected to my work at
Accenture. Opinions
expressed are mine, not
my employer’s, etc.

Premise: why EvilVM?

Most programming languages
and development platforms are
not designed for malicious
software use cases.

Created by Arthur Shlain
from the Noun Project

Created by John Caserta
from the Noun Project

screw by Arthur Shlain from the Noun Project
Hammer by John Caserta from the Noun Project

RCE: the central use case

Programming languages enable
you to write programs to run
on your computer.

RCE: the central use case

Programming languages enable
you to write programs to run
on your computer.

RCE: the central use case

Programming languages enable
you to write programs to run
on your computer.

Hackers write programs to run
on someone else’s computer.

RCE: the central use case

Your Computer Others’ computers

Use resources Avoid notice

Create files Leave no evidence

Install dependencies Leave forest undisturbed

Permission granted Fight defensive suites

Use OS interfaces Subversive channels

Restart whenever HA / resilient

Static / unchanging Live updates during use

Defined use case Use case changes often

Design: small

Most friendly languages make large
binaries, or require large runtimes
or dependencies.

Design: flexible execution

Design: remote IO

Design: wide capabilities

Design: dynamic code loading

Sword by Vertigophase from the Noun Project
Zombie, Axe, Pickaxe by Lluisa Iborra from the Noun Project
hacker by Kamaluddin from the Noun Project

Key
Logger

RAM
Scraper

DLL
Injector

Design: virtual machine

First thought,
build a small
injectable VM,
compile and load
code remotely.

But concept
morphed as I
realized I could put
the whole language
in the agent.

Didn’t want to name
it Evil, though, so
EvilVM it is,
anyway.

Computer by Denis Shumaylov from the Noun Project

EvilVM: intro

Server console for
control /
interaction.

 Multiple
 concurrent
 sessions

 Dynamic
 code loading

 REPL / direct
 Compiler
 interaction

EvilVM: intro

Native code compiler for stack-based language:

EvilVM: intro

Same environment, any IO layer:

 TCP Agent connects over socket
 HTTP Agent uses wininet for comms
 Streams Use STDIN/STDOUT streams
 Memory Read IO from memory

Easy to add more. IO is a simple stream of bytes
in and out; all code is protocol agnostic.

Tunnel Up by Alone forever from the Noun Project
Zombie by Lluisa Iborra from the Noun Project
hacker by Kamaluddin from the Noun Project

abcd... -->
 <-- ...dcba

EvilVM: intro

EvilVM is small, about 5-10KB, depending on IO
transport, trim level, and encapsulation
methods:

EvilVM: intro

EvilVM is a position independent shellcode,
which can be packaged or encoded however you
like. It requires no dependencies other than
kernel32.dll.

PLT: compilers are big

So how do we fit our
programming
language into a
small payload, that
runs fileless, and
deploys flexibly?

PLT: compilers are big

http://venge.net/graydon/talks/CompilerTalk-2019.pdf

G
C
C

L
L
V
M

C
l
a
n
g

V
8

S
w
i
f
t

R
u
s
t

G
H
C

C
h
e
z

S
c
h
e
m
e

T
u
r
b
o

P
a
s
c
a
l

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

2,200,000

1,200,000

800,000

660,000

530,000

360,000

180,000
87,000

14,000

Compiler Codebases

L
i
n
e
s

o
f

c
o
d
e

PLT: compilers are big

R. G. Loeliger’s “Threaded Interpretive Languages“, 1981
https://tinyurl.com/y4j94d6z

Lightweight, memory constrained environments were

de rigueur back in the day. The RCE use case bears

remarkable similarity to the early days of hobbyist

computing.

I found inspiration in Forth, a programming language

invented by Chuck Moore in 1970, and based on a

unique code execution and compilation paradigm.

PLT: compilers

Typical compiler:

 Lexing
 Parsing
 Transformation
 Code generation
 Linking

PLT: compilers

Typical compiler:

 Lexing
 Parsing
 Transformation
 Code generation
 Linking

int main() {
 printf(“%d\n“, 3 + 4);
}

PLT: compilers

Typical compiler:

 Lexing
 Parsing
 Transformation
 Code generation
 Linking

Main

printf

“%d\n“ +

3 4

PLT: compilers

Typical compiler:

 Lexing
 Parsing
 Transformation
 Code generation
 Linking

Main

printf

“%d\n“ +

3 4Created by monkik
from the Noun Project

PLT: compilers

Typical compiler:

 Lexing
 Parsing
 Transformation
 Code generation
 Linking

PLT: compilers

Typical compiler:

 Lexing
 Parsing
 Transformation
 Code generation
 Linking

PLT: stack based language

Forth compiler:

 Lexing
 Parsing
 Transformation
 Code generation
 Linking

Single-pass
lexing

amounts to
splitting
fields on

whitespace

PLT: stack based language

Forth compiler:

 Easy Lexing
 Parsing
 Transformation
 Code generation
 Linking

Traditional
Forth

compilers have
no syntax
tree or

intermediate
form.

PLT: stack based language

Forth compiler:

 Easy Lexing
 Parsing
 Transformation
 Code generation
 Linking

No intermediate
form means in-

place
transformation
of the program.

PLT: stack based language

Forth compiler:

 Easy Lexing
 Parsing
 Transformation
 Code generation
 Linking

Code generation
occurs linearly,
normally with

only two cases:
constants and
function calls.

PLT: stack based language

Forth compiler:

 Easy Lexing
 Parsing
 Transformation
 Easy Code gen.
 Linking

Code is compiled
at run-time, so
there is usually
no compatible

analog for
linked bodies of

object code.

PLT: stack based language

Forth compiler:

 Easy Lexing
 Parsing
 Transformation
 Easy Code gen.
 Linking

Forth compilers
can be made

VERY SMALL, and
level of

sophistication
is up to the
programmer.

PLT: forth ecosystem

Forth has two stacks, the data stack for
temporary storage, and the return stack
for nested execution. Code is usually
reverse polish notation, putting
arguments before the function call.

 (2 + 3) * 5 2 3 + 5 *

 if(x and 1) ... x 1 and if ...

 quad(a, b, c) a b c quad

Formally, functions do not technically
take arguments, but all have the same
type signature:

 stack fun(stack)

PLT: forth ecosystem

Maps names to
addresses in
memory. Almost all
variables,
functions, etc., are
definitions in the
dictionary.

The
Dictionary

PLT: forth ecosystem

create a new dictionary entry
while true:
 read a word from input
 if word in dictionary:
 if word is normal:
 compile a function call
 else:
 execute it
 else:
 if word is a number:
 compile a constant
 else:
 break

The ’:’ compiler

PLT: linear compilation

The initial dictionary contains only what
is needed by the compiler. The rest is
added in the core API.

PLT: linear compilation

if ... else ... then are just compiler
extensions that add conditionals to the
language:

PLT: linear compilation

So are begin ... while ... repeat,
structures, etc.

It’s a PROGRAMMABLE COMPILER.

Demo: configure / connect

Demo: keylogger
...

: testkeys
 256 0 do
 i testkey
 loop
;

: keylog
 begin
 key? until
 testkeys
 8 ms
 repeat
;

Demo: keylogger
...

: dodown
 wasdown? if
 drop
 else
 dup keystate set
 report
 then
;

: testkey
 dup isdown? if
 dodown
 else
 keystate unset
 then
;

...

Demo: keylogger

Demo: exploration

Demo: abstraction

Summary: project status

Still very ALPHA,
with unstable API,
and lots of changes.
but, for the bold of
heart:

EvilVM is open
source, under the
MIT license and can
be found at:

http://evilvm.ninja/

https://github.com/jephthai/evilvm/

Summary: project status

On the list for enhancement:

o More resilience (maybe Erlang OTP-
 Inspired model for HA / self-healing)

 o Higher-layer, user-friendly scripting
 language, built on top of parsing
 library

 o More transport layers (ICMP, etc.)

 o LOTS of demonstration videos and
 tours through the system

 o More documentation

EOP: questions?

You can find me online:

 yakovdk gmail.com@gmail.com

 Josh5tone@gmail.com

 http://thestone.zone/

 http://joshstone.us/

Special thanks to the Color Graphics
Array for making this presentation
possible.

